- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Adler, Peter B. (2)
-
Danihelka, Jiří (2)
-
Dengler, Jürgen (2)
-
Eldridge, David J. (2)
-
Estiarte, Marc (2)
-
Galland, Thomas (2)
-
Garnier, Eric (2)
-
Gómez‐García, Daniel (2)
-
Götzenberger, Lars (2)
-
Ibáñez, Ricardo (2)
-
Jentsch, Anke (2)
-
Juergens, Norbert (2)
-
Kertész, Miklós (2)
-
Klumpp, Katja (2)
-
Lepš, Jan (2)
-
Louault, Frédérique (2)
-
Marrs, Rob H. (2)
-
Pakeman, Robin J. (2)
-
Peco, Begoña (2)
-
Peñuelas, Josep (2)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Valencia, Enrique; de Bello, Francesco; Galland, Thomas; Adler, Peter B.; Lepš, Jan; E-Vojtkó, Anna; van Klink, Roel; Carmona, Carlos P.; Danihelka, Jiří; Dengler, Jürgen; et al (, Proceedings of the National Academy of Sciences)The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.more » « less
An official website of the United States government
